Algebraic Attack in Presence of Non-Linear and Noisy Equations

Zahra Eskandari
Ferdowsi University of Mashhad

February 2020
Outline

• Algebraic Attack
• Cube Attack
• Non-BlackBox Cube Attack
• Non-Linear and Noisy Equations
• Probabilistic Cube Attack
• Conclusion & Future Works
Algebraic Attack

- Write the cipher as a system of polynomial equations
- Recover the secret key by solving equation system: NP-Hard
 - Gröbner basis algorithms (Buchberger, F4 and F5)
 - XL and XSL
 - SAT Solver based and Optimization approaches

- Cube Attack: Offline Equation Extraction

In high rounds:
- Large Equation System
- Explosion in memory space
- Exponential time complexity
Cube Attack

- Phase 1: Linear Equation Extraction
 - Ciphertext bit as a polynomial function of Plaintext and Key
 \[C_i = p(P, K) \]
 \[I \subset P, x = P \cup K, C_i = t_I \cdot Ps(I) + q(x) \]
 \[Ps(I) = \sum_{v \in C_I} p(P, K) (mod \ 2) = p(W, K) \text{ with } \begin{cases} \begin{array}{l} W = \{ i \in P | i \notin I \} = 0, \\ p(K) \end{array} \end{cases} \]

- Phase 2: Solving extracted equations by Gaussian Elimination
Challenges of Cube Attack

- High complexity of linear equation extraction
 - Heuristic selection of set I: Random Walk
 - Test a large number of cubes for high rounds
 - BlackBox manner

- Lack of linear equations in high rounds
 - Secret bits are confused complicatedly
 - Ciphertext bit is more dense
Non-BlackBox Equation Extraction by Division property

- **Division property (Todo, 2015)**
 - Successful approach to find integral distinguishers in non-blackbox manner
 - Determine initial Division Property D_{K_0} based on set I
 - Obtain D_{K_i} from the propagation rules in accordance with the round function after i rounds
 - Determine existence of integral distinguishers in r-round via a valid propagation trail: $K_0 \rightarrow K_1 \rightarrow K_2 \rightarrow \cdots \rightarrow K_r$

- **Efficient and Automatic Evaluation of propagation (Eskandari, 2018)**
 - SAT-based approach to find Integral Distinguishers using division property
 - Map searching for propagation trail to a SAT problem
 - 30 primitives with different design strategies
 - Find several new or improved distinguishers with lower data complexity
Non-BlackBox Equation Extraction by Division property (Cont.)

- Employing division property in cube attacks (Eskandari, 2019)
 - Adapting SAT-based approach to extract cube distinguishers in block ciphers
 - Considering key variables and key schedule function in the propagation trail
 - Decrease the complexity because of non-blackbox manner
 - Apply to lightweight block cipher KATAN32
 - Cube distinguishers are extended to higher rounds

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Number of Distinguisher</th>
<th>Type</th>
<th>Att. Time</th>
<th>Complexity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>41</td>
<td>constant cube distinguisher</td>
<td>2^{39}</td>
<td>83</td>
<td>(Ahmadiyan, 2015)</td>
</tr>
<tr>
<td>71</td>
<td>31</td>
<td>zero-sum integral distinguisher</td>
<td>-</td>
<td>99</td>
<td>(Sun, 2016)</td>
</tr>
<tr>
<td>72</td>
<td>44</td>
<td>constant cube distinguisher</td>
<td>2^{36}</td>
<td>101</td>
<td>Here</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>constant cube distinguisher</td>
<td>-</td>
<td>-</td>
<td>Here</td>
</tr>
</tbody>
</table>
Challenges of Cube Attack

- High complexity of linear equation extraction
 - Heuristic selection of set I: Random Walk
 - Test a large number of cubes for high rounds
 - BlackBox manner

- Lack of linear equations in high rounds
 - Secret bits are confused complicatedly
 - Ciphertext bit is more dense
Nonlinear and Noisy EQ

- To prevent complexity of Non-Linear equations solving
 - probabilistic linearization
 - Linearization of nonlinear terms
 - Elimination of other terms and considering equation as noisy one
 - Extracting linear equation with high probability

- Generating probabilistic equation system
Solving probabilistic equation system: Noisy equation system

- MAX-POSSO: Finding the solution that satisfies the maximum number of equations
 - Consider noisy polynomial system $F = \{f_1, f_2, \ldots, f_m\}$
 - Define noise vector $e = (e_1, e_2, \ldots, e_m)$

- Incremental solving & backtracking search tree (Huang, 2017)
 - Find e with the smallest Hamming weight that $\{f_1 + e_1, f_2 + e_2, \ldots, f_m + e_m\}$ has a solution
 - Higher success rate and more efficient in comparison to others

Approaches to solve noisy equation system

- Optimization approaches (Albrecht, 2011)
- Coding approaches (Yuan, 2016)
- ISBS (Huang, 2017)

Height of the search tree is dependent on the number of probabilistic equations

Not efficient at high error rates: near 6 hours for 20 nonlinear equations
Nonlinear and Noisy EQ(Cont.)

- To enhance the efficiency and practicality of ISBS
 - Considering the probability of equations in the search tree
 - Linearize nonlinear equations
 - Consistency checking instead of partial solving

- Near half an hour for solving equation system with 19 probabilistic equations
Probabilistic Cube Attack

- Phase 1: Linear equation extraction - deterministic and probabilistic-
- Phase 2: Solving probabilistic linear equation system using improved ISBS
 - Assigning proper noise values to probabilistic equations efficiently

- Improve the results to higher round (Eskandari, 2020)

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Rounds</th>
<th>Time Complexity</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATAN32</td>
<td>80</td>
<td>2^{36}</td>
<td>Cube Attack</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>2^{37}</td>
<td>Probabilistic Cube Attack</td>
</tr>
</tbody>
</table>
Conclusion & Future Works

- Probabilistic cube attack utilizing Non-Linear and Noisy equations
 - Extend original cube attacks to higher round

- Open problem: can we extend algebraic attack to higher round utilizing Noisy and lower degree equations?

- Application of noisy equations solving in Side Channel attacks
Thanks for Your Attention